
USENIX Security ’25 Artifact Appendix: EmbedX: Embedding-Based
Cross-Trigger Backdoor Attack Against Large Language Models

Nan Yan1, Yuqing Li1, Xiong Wang2, Jing Chen1, Kun He1, and Bo Li3
1Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education,

School of Cyber Science and Engineering, Wuhan University
2School of Computer Science and Technology, Huazhong University of Science and Technology

3Department of Computer Science and Engineering, Hong Kong University of Science and Technology

A Artifact Appendix

A.1 Abstract

This artifact accompanies the paper “EmbedX: Embedding-
Based Cross-Trigger Backdoor Attack Against Large Lan-
guage Models”.

Existing backdoor attacks against large language models
(LLMs) predominantly focus on single-trigger mechanisms,
while ignoring the variations in different users’ responses to
the same trigger, thus often resulting in undermined attack
effectiveness. In this work, we propose EmbedX, a novel and
efficient cross-trigger backdoor attack that operates in the
embedding space of LLMs. EmbedX employs a soft trigger
mechanism that is activated through token fuse, enabling the
injection of backdoors.

This artifact consists of the following components:

• Test Datasets: We evaluate EmbedX across a diverse set
of tasks, including binary classification (SST-2, IMDB,
Twitter), multi-class classification (Emotion), and in-
struction tuning for text generation (Alpaca).

• EmbedX Implementation: The artifact provides imple-
mentations for the three core stages of the EmbedX
attack: (1) soft trigger generation at the embedding
layer, (2) latent adversarial backdoor injection under dual
stealthiness constraints, and (3) alignment of multiple
token embeddings to form an effective cross-trigger that
activates the backdoor.

• EmbedX Evaluation: We provide comprehensive testing
scripts to reproduce the experimental results reported in
the paper. These scripts are configured for four different
target LLMs and are designed to evaluate the effective-
ness of the cross-trigger attack in a fully reproducible
manner.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None. All datasets and models used in this work are publicly
available and are intended strictly for academic research pur-
poses. We explicitly do not condone, promote, or facilitate the
deployment of backdoored LLMs in real-world applications.
The intent of this research is to raise awareness of potential
vulnerabilities in LLMs and to support the development of
more robust defense mechanisms. Additionally, all trigger
designs used in our experiments are culturally neutral and do
not contain any sensitive, offensive, or harmful content.

A.2.2 How to access

We provide a stable reference via Zenodo (please refer to the
latest version) at https://doi.org/10.5281/zenodo.15609883
The artifact can also be accessed in Github by link
https://github.com/lunan0320/EmbedX.

A.2.3 Hardware dependencies

This artifact does not require any specialized hardware beyond
standard GPU computing resources. For optimal performance,
we recommend using either 4 NVIDIA RTX 4090 GPUs (24
GB VRAM per GPU) or a single NVIDIA A100 GPU (80
GB VRAM). Our experiments were conducted on a system
running Ubuntu 20.04.3 LTS, equipped with 128 AMD EPYC
7532 CPU cores and 503 GB of RAM.

Compatibility with other GPU configurations is not guar-
anteed and may require adjustments.

A.2.4 Software dependencies

The artifact requires the following software or packages:

• Python 3.9.12 or above, CUDA 12.0.

• Core Python libraries: torch, transformers,
datasets, peft, and accelerate.

https://doi.org/10.5281/zenodo.15609883
https://github.com/lunan0320/EmbedX


All additional dependencies are listed in the accompanying
requirements.txt file.

A.2.5 Benchmarks

See below.

A.3 Set-up
A.3.1 Installation

The artifact can be obtained as a zip compressed archive on
Zenodo or cloned from the Github repository.

To install the required packages for running EmbedX, exe-
cute:

pip install -r requirements.txt
HuggingFace credentials: Some models used in this project

are hosted on HuggingFace and may require authentication
to download.

1.Install the HuggingFace Hub tools:
pip install huggingface_hub

2.Login to your HuggingFace account:
huggingface-cli login

This command will prompt you to enter your HuggingFace
access token.

Next, grant executable permissions to the shell scripts in
the run/ directory:

chmod +x run/*.sh
To download the datasets, run:

./run/0-data.sh
To download the required models, run:

./run/0-models.sh
For additional setup details and usage instructions, please
refer to the README file in the artifact repository.

A.3.2 Basic Test

This test validates the full EmbedX attack pipeline, focusing
on the completeness of its components and the correctness
of their functionality. The procedure involves the following
steps:

• Step 0: Fine-tune a clean model.

• Step 1: Generate a soft trigger.

• Step 2: Inject a latent adversarial backdoor.

• Step 3: Align multiple token embeddings with the soft
trigger.

To simulate the entire attack process using a reduced dataset
(approximately 1% of the full training set), run the following
commands to execute Embedx step 1, step 2, step 3:

./run/0-basic_test.sh

Logs will be saved to /logs/0-basic_test.log. Upon
completion, the outputs of each step can be found in the fol-
lowing directories:

• The generated soft trigger (Step 1): /trigger_save/

• The backdoored model after injection (Step 2):
/output/

• The final backdoored model after token-fuse optimiza-
tion (Step 3): /soft_model/

This run is intended solely to verify that all major components
are present and functioning as expected.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): EmbedX achieves superior attack effectiveness and ef-
ficiency across four datasets and target LLMs. This claim
is supported by experiment (E1), described in Section
4.2, with results presented in Table 2 and Figure 4.

(C2): EmbedX enables fine-grained cross-trigger backdoor
attacks using diverse token triggers. This claim is sup-
ported by experiments (E2) and (E3), with results shown
in Table 3.

A.4.2 Experiments

This section outlines the experimental procedures. You can
find the log files from our experiments conducted on a sin-
gle A100 GPU or 4 RTX 4090 GPUs in the saved_logs/
directory.

It’s worth noting that in all pipeline scripts, we use pkill
after each step to release GPU memory and prevent out-of-
memory (OOM) errors in subsequent steps. If you prefer not
to do this, you can comment out the other steps in the pipeline
script and run only one step at a time.
(E1): [Overall performance comparison] [5 human-minutes

+ 1.5-3.5 compute-hours]: This experiment evaluates
backdoored models generated using rare words and in-
tentional misspellings as token triggers. We assess model
utility, attack effectiveness, and attack efficiency using
clean test accuracy (CTA), attack success rate (ASR),
and training time (Time), respectively.
How to: Please refer to BLOOM-7b@SST-2,
Llama2-7b@Twitter, and Llama3-8b@Emotion
under the README file for detailed instructions.
Execution: First, run the pipeline script
./run/{number}-pipeline_{model_name}_{datas
et_name}.sh to generate the backdoored model.
Then, run the test script to evaluate the performance
./run/{number}-test_{model_name}_{dataset_n
ame}.sh.

https://doi.org/10.5281/zenodo.15609883
https://github.com/lunan0320/EmbedX


Results: The resulting soft triggers are saved in
the trigger_save/ directory, the soft-triggered back-
doored models in output/, and the token-fusion-based
backdoored models in soft_model/. Logs for both
training and evaluation are stored in the logs/ folder.
Summary: Then, please run the command python
parase_log.py logs/{your_log}.log to parse the
log file. You can then find the generated .csv and .md
summary files in the log/ folder to view the test results
table.

(E2): [Cross-style attack] [2 human-minutes + 1.5 compute-
hour]: This experiment evaluates the backdoor perfor-
mance with domain-specific token triggers in instruction-
tuned models.
How to: See Gemma2-9b@Alpaca under the README.
Execution: First, generate backdoored model with the
command ./run/4-pipeline_gemma2_alpaca.sh.
Then, evaluate the performance with command
./run/4-test_gemma2_alpaca.sh.
Results: As in (E1), the outputs follow the
same directory structure. Logs are saved to:
/logs/4-pipeline_gemma2_alpaca.log and /logs
/4-test_gemma2_alpaca.log.
Summary: As in (E1), run the command python
parase_log.py logs/{your_log}.log to parse the
log file and view the test results table.

(E3): [Cross custom trigger attack] [2 human-minutes + 2
compute-minutes]: This experiment evaluates the ability
of EmbedX to generalize to arbitrary custom token fuses
without additional training.
How to: See Cross New Trigger Attack under the
README file.
Execution: First, remove any existing model files in
soft_model/. Run the following command to establish
the mapping between the new token fuses (e.g., "loko,
th1s, quizzaciously") and the soft trigger:
./run/5-token_fuse_bloom_sst2.sh
Run the following script to evaluate the attack. The new
token fuses will effectively trigger the backdoor behavior
without requiring any additional training.
./run/5-test_token_fuse_bloom_sst2.sh
Results: The updated backdoored model will
be saved in soft_model/, and logs for embed-
ding alignment and evaluation are written to
logs/5-token_fuse_bloom_sst2.log and logs/5-
test_token_fuse_bloom_sst2.log, respectively.
Summary: As in (E1), run the command python
parase_log.py logs/{your_log}.log to parse the
log file and view the test results table.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-

ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


